
20
CRASH RECOVERY

Humpty Dumpty sat on a wall.

Humpty Dumpty had a great fall.

All the King’s horses and all the King’s men

Could not put Humpty together again.

—Old nursery rhyme

The recovery manager of a DBMS is responsible for ensuring two important prop-

erties of transactions: atomicity and durability. It ensures atomicity by undoing the

actions of transactions that do not commit and durability by making sure that all

actions of committed transactions survive system crashes, (e.g., a core dump caused

by a bus error) and media failures (e.g., a disk is corrupted).

The recovery manager is one of the hardest components of a DBMS to design and

implement. It must deal with a wide variety of database states because it is called on

during system failures. In this chapter, we present the ARIES recovery algorithm,

which is conceptually simple, works well with a wide range of concurrency control

mechanisms, and is being used in an increasing number of database sytems.

We begin with an introduction to ARIES in Section 20.1. We discuss recovery from a

crash in Section 20.2. Aborting (or rolling back) a single transaction is a special case

of Undo and is discussed in Section 20.2.3. We concentrate on recovery from system

crashes in most of the chapter and discuss media failures in Section 20.3. We consider

recovery only in a centralized DBMS; recovery in a distributed DBMS is discussed in

Chapter 21.

20.1 INTRODUCTION TO ARIES

ARIES is a recovery algorithm that is designed to work with a steal, no-force approach.

When the recovery manager is invoked after a crash, restart proceeds in three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have not

been written to disk) and active transactions at the time of the crash.

571



572 Chapter 20

2. Redo: Repeats all actions, starting from an appropriate point in the log, and

restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that the

database reflects only the actions of committed transactions.

Consider the simple execution history illustrated in Figure 20.1. When the system is

10

20

30

40

50

LSN LOG 

update: T1 writes P5

update: T2 writes P3

T2 commit

CRASH, RESTART

update: T3 writes P3

update: T3 writes P1

T2 end

60

Figure 20.1 Execution History with a Crash

restarted, the Analysis phase identifies T1 and T3 as transactions that were active at

the time of the crash, and therefore to be undone; T2 as a committed transaction,

and all its actions, therefore, to be written to disk; and P1, P3, and P5 as potentially

dirty pages. All the updates (including those of T1 and T3) are reapplied in the order

shown during the Redo phase. Finally, the actions of T1 and T3 are undone in reverse

order during the Undo phase; that is, T3’s write of P3 is undone, T3’s write of P1 is

undone, and then T1’s write of P5 is undone.

There are three main principles behind the ARIES recovery algorithm:

Write-ahead logging: Any change to a database object is first recorded in the

log; the record in the log must be written to stable storage before the change to

the database object is written to disk.

Repeating history during Redo: Upon restart following a crash, ARIES re-

traces all actions of the DBMS before the crash and brings the system back to the

exact state that it was in at the time of the crash. Then, it undoes the actions

of transactions that were still active at the time of the crash (effectively aborting

them).



Crash Recovery 573

Crash recovery: IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and

Sybase ASE all use a WAL scheme for recovery. IBM DB2 uses ARIES, and the

others use schemes that are actually quite similar to ARIES (e.g., all changes

are re-applied, not just the changes made by transactions that are “winners”)

although there are several variations.

Logging changes during Undo: Changes made to the database while undoing

a transaction are logged in order to ensure that such an action is not repeated in

the event of repeated (failures causing) restarts.

The second point distinguishes ARIES from other recovery algorithms and is the basis

for much of its simplicity and flexibility. In particular, ARIES can support concurrency

control protocols that involve locks of finer granularity than a page (e.g., record-level

locks). The second and third points are also important in dealing with operations

such that redoing and undoing the operation are not exact inverses of each other. We

discuss the interaction between concurrency control and crash recovery in Section 20.4,

where we also discuss other approaches to recovery briefly.

20.1.1 The Log

The log, sometimes called the trail or journal, is a history of actions executed by the

DBMS. Physically, the log is a file of records stored in stable storage, which is assumed

to survive crashes; this durability can be achieved by maintaining two or more copies

of the log on different disks (perhaps in different locations), so that the chance of all

copies of the log being simultaneously lost is negligibly small.

The most recent portion of the log, called the log tail, is kept in main memory and

is periodically forced to stable storage. This way, log records and data records are

written to disk at the same granularity (pages or sets of pages).

Every log record is given a unique id called the log sequence number (LSN).

As with any record id, we can fetch a log record with one disk access given the LSN.

Further, LSNs should be assigned in monotonically increasing order; this property is

required for the ARIES recovery algorithm. If the log is a sequential file, in principle

growing indefinitely, the LSN can simply be the address of the first byte of the log

record.1

1In practice, various techniques are used to identify portions of the log that are ‘too old’ to ever be

needed again, in order to bound the amount of stable storage used for the log. Given such a bound,

the log may be implemented as a ‘circular’ file, in which case the LSN may be the log record id plus

a wrap-count.



574 Chapter 20

For recovery purposes, every page in the database contains the LSN of the most recent

log record that describes a change to this page. This LSN is called the pageLSN.

A log record is written for each of the following actions:

Updating a page: After modifying the page, an update type record (described

later in this section) is appended to the log tail. The pageLSN of the page is then

set to the LSN of the update log record. (The page must be pinned in the buffer

pool while these actions are carried out.)

Commit: When a transaction decides to commit, it force-writes a commit type

log record containing the transaction id. That is, the log record is appended to the

log, and the log tail is written to stable storage, up to and including the commit

record.2 The transaction is considered to have committed at the instant that its

commit log record is written to stable storage. (Some additional steps must be

taken, e.g., removing the transaction’s entry in the transaction table; these follow

the writing of the commit log record.)

Abort: When a transaction is aborted, an abort type log record containing the

transaction id is appended to the log, and Undo is initiated for this transaction

(Section 20.2.3).

End: As noted above, when a transaction is aborted or committed, some ad-

ditional actions must be taken beyond writing the abort or commit log record.

After all these additional steps are completed, an end type log record containing

the transaction id is appended to the log.

Undoing an update: When a transaction is rolled back (because the transaction

is aborted, or during recovery from a crash), its updates are undone. When the

action described by an update log record is undone, a compensation log record, or

CLR, is written.

Every log record has certain fields: prevLSN, transID, and type. The set of all log

records for a given transaction is maintained as a linked list going back in time, using

the prevLSN field; this list must be updated whenever a log record is added. The

transID field is the id of the transaction generating the log record, and the type field

obviously indicates the type of the log record.

Additional fields depend on the type of the log record. We have already mentioned the

additional contents of the various log record types, with the exception of the update

and compensation log record types, which we describe next.

2Note that this step requires the buffer manager to be able to selectively force pages to stable

storage.



Crash Recovery 575

Update Log Records

The fields in an update log record are illustrated in Figure 20.2. The pageID field

pageIDtransID type length before-image after-imageprevLSN offset

Fields common to all log records Additional fields for update log records

Figure 20.2 Contents of an Update Log Record

is the page id of the modified page; the length in bytes and the offset of the change

are also included. The before-image is the value of the changed bytes before the

change; the after-image is the value after the change. An update log record that

contains both before- and after-images can be used to redo the change and to undo

it. In certain contexts, which we will not discuss further, we can recognize that the

change will never be undone (or, perhaps, redone). A redo-only update log record

will contain just the after-image; similarly an undo-only update record will contain

just the before-image.

Compensation Log Records

A compensation log record (CLR) is written just before the change recorded

in an update log record U is undone. (Such an undo can happen during normal

system execution when a transaction is aborted or during recovery from a crash.) A

compensation log record C describes the action taken to undo the actions recorded in

the corresponding update log record and is appended to the log tail just like any other

log record. The compensation log record C also contains a field called undoNextLSN,

which is the LSN of the next log record that is to be undone for the transaction that

wrote update record U ; this field in C is set to the value of prevLSN in U .

As an example, consider the fourth update log record shown in Figure 20.3. If this

update is undone, a CLR would be written, and the information in it would include

the transID, pageID, length, offset, and before-image fields from the update record.

Notice that the CLR records the (undo) action of changing the affected bytes back to

the before-image value; thus, this value and the location of the affected bytes constitute

the redo information for the action described by the CLR. The undoNextLSN field is

set to the LSN of the first log record in Figure 20.3.

Unlike an update log record, a CLR describes an action that will never be undone,

that is, we never undo an undo action. The reason is simple: an update log record

describes a change made by a transaction during normal execution and the transaction

may subsequently be aborted, whereas a CLR describes an action taken to rollback a



576 Chapter 20

transaction for which the decision to abort has already been made. Thus, the trans-

action must be rolled back, and the undo action described by the CLR is definitely

required. This observation is very useful because it bounds the amount of space needed

for the log during restart from a crash: The number of CLRs that can be written dur-

ing Undo is no more than the number of update log records for active transactions at

the time of the crash.

It may well happen that a CLR is written to stable storage (following WAL, of course)

but that the undo action that it describes is not yet written to disk when the system

crashes again. In this case the undo action described in the CLR is reapplied during

the Redo phase, just like the action described in update log records.

For these reasons, a CLR contains the information needed to reapply, or redo, the

change described but not to reverse it.

20.1.2 Other Recovery-Related Data Structures

In addition to the log, the following two tables contain important recovery-related

information:

Transaction table: This table contains one entry for each active transaction.

The entry contains (among other things) the transaction id, the status, and a field

called lastLSN, which is the LSN of the most recent log record for this transaction.

The status of a transaction can be that it is in progress, is committed, or is

aborted. (In the latter two cases, the transaction will be removed from the table

once certain ‘clean up’ steps are completed.)

Dirty page table: This table contains one entry for each dirty page in the buffer

pool, that is, each page with changes that are not yet reflected on disk. The entry

contains a field recLSN, which is the LSN of the first log record that caused the

page to become dirty. Note that this LSN identifies the earliest log record that

might have to be redone for this page during restart from a crash.

During normal operation, these are maintained by the transaction manager and the

buffer manager, respectively, and during restart after a crash, these tables are recon-

structed in the Analysis phase of restart.

Consider the following simple example. Transaction T1000 changes the value of bytes

21 to 23 on page P500 from ‘ABC’ to ‘DEF’, transaction T2000 changes ‘HIJ’ to ‘KLM’

on page P600, transaction T2000 changes bytes 20 through 22 from ‘GDE’ to ‘QRS’

on page P500, then transaction T1000 changes ‘TUV’ to ‘WXY’ on page P505. The

dirty page table, the transaction table,3 and the log at this instant are shown in Figure

3The status field is not shown in the figure for space reasons; all transactions are in progress.



Crash Recovery 577

TRANSACTION TABLE

DIRTY PAGE TABLE

3

LOG

P500

P600

P505

T1000

T2000

T1000

T2000

T2000

T1000 update

update

update

update P500

P600

P500

P505

3

3

3

21

41

20

21

DEF

KLM

QRS

WXYTUV

GDE

HIJ

ABC

prevLSN transID type pageID length offset before-image after-image

pageID recLSN

transID lastLSN

Figure 20.3 Instance of Log and Transaction Table

20.3. Observe that the log is shown growing from top to bottom; older records are at

the top. Although the records for each transaction are linked using the prevLSN field,

the log as a whole also has a sequential order that is important—for example, T2000’s

change to page P500 follows T1000’s change to page P500, and in the event of a crash,

these changes must be redone in the same order.

20.1.3 The Write-Ahead Log Protocol

Before writing a page to disk, every update log record that describes a change to this

page must be forced to stable storage. This is accomplished by forcing all log records

up to and including the one with LSN equal to the pageLSN to stable storage before

writing the page to disk.

The importance of the WAL protocol cannot be overemphasized—WAL is the funda-

mental rule that ensures that a record of every change to the database is available while

attempting to recover from a crash. If a transaction made a change and committed,

the no-force approach means that some of these changes may not have been written to

disk at the time of a subsequent crash. Without a record of these changes, there would

be no way to ensure that the changes of a committed transaction survive crashes. Note

that the definition of a committed transaction is effectively “a transaction whose log

records, including a commit record, have all been written to stable storage”!

When a transaction is committed, the log tail is forced to stable storage, even if a no-

force approach is being used. It is worth contrasting this operation with the actions

taken under a force approach: If a force approach is used, all the pages modified by

the transaction, rather than a portion of the log that includes all its records, must be

forced to disk when the transaction commits. The set of all changed pages is typically

much larger than the log tail because the size of an update log record is close to (twice)

the size of the changed bytes, which is likely to be much smaller than the page size.



578 Chapter 20

Further, the log is maintained as a sequential file, and thus all writes to the log are

sequential writes. Consequently, the cost of forcing the log tail is much smaller than

the cost of writing all changed pages to disk.

20.1.4 Checkpointing

A checkpoint is like a snapshot of the DBMS state, and by taking checkpoints peri-

odically, as we will see, the DBMS can reduce the amount of work to be done during

restart in the event of a subsequent crash.

Checkpointing in ARIES has three steps. First, a begin checkpoint record is written

to indicate when the checkpoint starts. Second, an end checkpoint record is con-

structed, including in it the current contents of the transaction table and the dirty page

table, and appended to the log. The third step is carried out after the end checkpoint

record is written to stable storage: A special master record containing the LSN of the

begin checkpoint log record is written to a known place on stable storage. While the

end checkpoint record is being constructed, the DBMS continues executing transac-

tions and writing other log records; the only guarantee we have is that the transaction

table and dirty page table are accurate as of the time of the begin checkpoint record.

This kind of checkpoint is called a fuzzy checkpoint and is inexpensive because it

does not require quiescing the system or writing out pages in the buffer pool (unlike

some other forms of checkpointing). On the other hand, the effectiveness of this check-

pointing technique is limited by the earliest recLSN of pages in the dirty pages table,

because during restart we must redo changes starting from the log record whose LSN

is equal to this recLSN. Having a background process that periodically writes dirty

pages to disk helps to limit this problem.

When the system comes back up after a crash, the restart process begins by locating

the most recent checkpoint record. For uniformity, the system always begins normal

execution by taking a checkpoint, in which the transaction table and dirty page table

are both empty.

20.2 RECOVERING FROM A SYSTEM CRASH

When the system is restarted after a crash, the recovery manager proceeds in three

phases, as shown in Figure 20.4.

The Analysis phase begins by examining the most recent begin checkpoint record,

whose LSN is denoted as C in Figure 20.4, and proceeds forward in the log until the

last log record. The Redo phase follows Analysis and redoes all changes to any page

that might have been dirty at the time of the crash; this set of pages and the starting



Crash Recovery 579

ANALYSIS

REDO

UNDO

C

B

A

LOG 
Oldest log record

in dirty page table

Most recent checkpoint

CRASH (end of log)

of transactions 
active at crash

Smallest recLSN

at end of Analysis

Figure 20.4 Three Phases of Restart in ARIES

point for Redo (the smallest recLSN of any dirty page) are determined during Analysis.

The Undo phase follows Redo and undoes the changes of all transactions that were

active at the time of the crash; again, this set of transactions is identified during the

Analysis phase. Notice that Redo reapplies changes in the order in which they were

originally carried out; Undo reverses changes in the opposite order, reversing the most

recent change first.

Observe that the relative order of the three points A, B, and C in the log may differ

from that shown in Figure 20.4. The three phases of restart are described in more

detail in the following sections.

20.2.1 Analysis Phase

The Analysis phase performs three tasks:

1. It determines the point in the log at which to start the Redo pass.

2. It determines (a conservative superset of the) pages in the buffer pool that were

dirty at the time of the crash.

3. It identifies transactions that were active at the time of the crash and must be

undone.

Analysis begins by examining the most recent begin checkpoint log record and initial-

izing the dirty page table and transaction table to the copies of those structures in

the next end checkpoint record. Thus, these tables are initialized to the set of dirty

pages and active transactions at the time of the checkpoint. (If there are additional

log records between the begin checkpoint and end checkpoint records, the tables must

be adjusted to reflect the information in these records, but we omit the details of this



580 Chapter 20

step. See Exercise 20.9.) Analysis then scans the log in the forward direction until it

reaches the end of the log:

If an end log record for a transaction T is encountered, T is removed from the

transaction table because it is no longer active.

If a log record other than an end record for a transaction T is encountered, an

entry for T is added to the transaction table if it is not already there. Further,

the entry for T is modified:

1. The lastLSN field is set to the LSN of this log record.

2. If the log record is a commit record, the status is set to C, otherwise it is set

to U (indicating that it is to be undone).

If a redoable log record affecting page P is encountered, and P is not in the dirty

page table, an entry is inserted into this table with page id P and recLSN equal

to the LSN of this redoable log record. This LSN identifies the oldest change

affecting page P that may not have been written to disk.

At the end of the Analysis phase, the transaction table contains an accurate list of all

transactions that were active at the time of the crash—this is the set of transactions

with status U. The dirty page table includes all pages that were dirty at the time of

the crash, but may also contain some pages that were written to disk. If an end write

log record were written at the completion of each write operation, the dirty page

table constructed during Analysis could be made more accurate, but in ARIES, the

additional cost of writing end write log records is not considered to be worth the gain.

As an example, consider the execution illustrated in Figure 20.3. Let us extend this

execution by assuming that T2000 commits, then T1000 modifies another page, say,

P700, and appends an update record to the log tail, and then the system crashes

(before this update log record is written to stable storage).

The dirty page table and the transaction table, held in memory, are lost in the crash.

The most recent checkpoint is the one that was taken at the beginning of the execution,

with an empty transaction table and dirty page table; it is not shown in Figure 20.3.

After examining this log record, which we assume is just before the first log record

shown in the figure, Analysis initializes the two tables to be empty. Scanning forward

in the log, T1000 is added to the transaction table; in addition, P500 is added to the

dirty page table with recLSN equal to the LSN of the first shown log record. Similarly,

T2000 is added to the transaction table and P600 is added to the dirty page table.

There is no change based on the third log record, and the fourth record results in the

addition of P505 to the dirty page table. The commit record for T2000 (not in the

figure) is now encountered, and T2000 is removed from the transaction table.



Crash Recovery 581

The Analysis phase is now complete, and it is recognized that the only active trans-

action at the time of the crash is T1000, with lastLSN equal to the LSN of the fourth

record in Figure 20.3. The dirty page table reconstructed in the Analysis phase is

identical to that shown in the figure. The update log record for the change to P700

is lost in the crash and is not seen during the Analysis pass. Thanks to the WAL

protocol, however, all is well—the corresponding change to page P700 cannot have

been written to disk either!

Some of the updates may have been written to disk; for concreteness, let us assume

that the change to P600 (and only this update) was written to disk before the crash.

Thus P600 is not dirty, yet it is included in the dirty page table. The pageLSN on

page P 600, however, reflects the write because it is now equal to the LSN of the third

update log record shown in Figure 20.3.

20.2.2 Redo Phase

During the Redo phase, ARIES reapplies the updates of all transactions, committed or

otherwise. Further, if a transaction was aborted before the crash and its updates were

undone, as indicated by CLRs, the actions described in the CLRs are also reapplied.

This repeating history paradigm distinguishes ARIES from other proposed WAL-

based recovery algorithms and causes the database to be brought to the same state

that it was in at the time of the crash.

The Redo phase begins with the log record that has the smallest recLSN of all pages in

the dirty page table constructed by the Analysis pass because this log record identifies

the oldest update that may not have been written to disk prior to the crash. Starting

from this log record, Redo scans forward until the end of the log. For each redoable

log record (update or CLR) encountered, Redo checks whether the logged action must

be redone. The action must be redone unless one of the following conditions holds:

The affected page is not in the dirty page table, or

The affected page is in the dirty page table, but the recLSN for the entry is greater

than the LSN of the log record being checked, or

The pageLSN (stored on the page, which must be retrieved to check this condition)

is greater than or equal to the LSN of the log record being checked.

The first condition obviously means that all changes to this page have been written

to disk. Because the recLSN is the first update to this page that may not have been

written to disk, the second condition means that the update being checked was indeed

propagated to disk. The third condition, which is checked last because it requires us

to retrieve the page, also ensures that the update being checked was written to disk,



582 Chapter 20

because either this update or a later update to the page was written. (Recall our

assumption that a write to a page is atomic; this assumption is important here!)

If the logged action must be redone:

1. The logged action is reapplied.

2. The pageLSN on the page is set to the LSN of the redone log record. No additional

log record is written at this time.

Let us continue with the example discussed in Section 20.2.1. From the dirty page

table, the smallest recLSN is seen to be the LSN of the first log record shown in Figure

20.3. Clearly the changes recorded by earlier log records (there happen to be none

in this example) have all been written to disk. Now, Redo fetches the affected page,

P500, and compares the LSN of this log record with the pageLSN on the page and,

because we assumed that this page was not written to disk before the crash, finds

that the pageLSN is less. The update is therefore reapplied; bytes 21 through 23 are

changed to ‘DEF’, and the pageLSN is set to the LSN of this update log record.

Redo then examines the second log record. Again, the affected page, P600, is fetched

and the pageLSN is compared to the LSN of the update log record. In this case,

because we assumed that P600 was written to disk before the crash, they are equal,

and the update does not have to be redone.

The remaining log records are processed similarly, bringing the system back to the exact

state it was in at the time of the crash. Notice that the first two conditions indicating

that a redo is unnecessary never hold in this example. Intuitively, they come into play

when the dirty page table contains a very old recLSN, going back to before the most

recent checkpoint. In this case, as Redo scans forward from the log record with this

LSN, it will encounter log records for pages that were written to disk prior to the

checkpoint and were therefore not in the dirty page table in the checkpoint. Some of

these pages may be dirtied again after the checkpoint; nonetheless, the updates to these

pages prior to the checkpoint need not be redone. Although the third condition alone

is sufficient to recognize that these updates need not be redone, it requires us to fetch

the affected page. The first two conditions allow us to recognize this situation without

fetching the page. (The reader is encouraged to construct examples that illustrate the

use of each of these conditions; see Exercise 20.8.)

At the end of the Redo phase, end type records are written for all transactions with

status C, which are removed from the transaction table.



Crash Recovery 583

20.2.3 Undo Phase

The Undo phase, unlike the other two phases, scans backward from the end of the log.

The goal of this phase is to undo the actions of all transactions that were active at

the time of the crash, that is, to effectively abort them. This set of transactions is

identified in the transaction table constructed by the Analysis phase.

The Undo Algorithm

Undo begins with the transaction table constructed by the Analysis phase, which

identifies all transactions that were active at the time of the crash, and includes the

LSN of the most recent log record (the lastLSN field) for each such transaction. Such

transactions are called loser transactions. All actions of losers must be undone, and

further, these actions must be undone in the reverse of the order in which they appear

in the log.

Consider the set of lastLSN values for all loser transactions. Let us call this set

ToUndo. Undo repeatedly chooses the largest (i.e., most recent) LSN value in this

set and processes it, until ToUndo is empty. To process a log record:

1. If it is a CLR, and the undoNextLSN value is not null, the undoNextLSN value

is added to the set ToUndo; if the undoNextLSN is null, an end record is written

for the transaction because it is completely undone, and the CLR is discarded.

2. If it is an update record, a CLR is written and the corresponding action is undone,

as described in Section 20.1.1, and the prevLSN value in the update log record is

added to the set ToUndo.

When the set ToUndo is empty, the Undo phase is complete. Restart is now complete,

and the system can proceed with normal operations.

Let us continue with the scenario discussed in Sections 20.2.1 and 20.2.2. The only

active transaction at the time of the crash was determined to be T1000. From the

transaction table, we get the LSN of its most recent log record, which is the fourth

update log record in Figure 20.3. The update is undone, and a CLR is written with

undoNextLSN equal to the LSN of the first log record in the figure. The next record

to be undone for transaction T1000 is the first log record in the figure. After this is

undone, a CLR and an end log record for T1000 are written, and the Undo phase is

complete.

In this example, undoing the action recorded in the first log record causes the action

of the third log record, which is due to a committed transaction, to be overwritten and

thereby lost! This situation arises because T2000 overwrote a data item written by



584 Chapter 20

T1000 while T1000 was still active; if Strict 2PL were followed, T2000 would not have

been allowed to overwrite this data item.

Aborting a Transaction

Aborting a transaction is just a special case of the Undo phase of Restart in which a

single transaction, rather than a set of transactions, is undone. The example in Figure

20.5, discussed next, illustrates this point.

Crashes during Restart

It is important to understand how the Undo algorithm presented in Section 20.2.3

handles repeated system crashes. Because the details of precisely how the action

described in an update log record is undone are straightforward, we will discuss Undo

in the presence of system crashes using an execution history, shown in Figure 20.5, that

abstracts away unnecessary detail. This example illustrates how aborting a transaction

is a special case of Undo and how the use of CLRs ensures that the Undo action for

an update log record is not applied twice.

10

20

CRASH, RESTART

30

50

60

70

CRASH, RESTART

update: T1 writes P5

update: T2 writes P3

update: T3 writes P1

update: T2 writes P5

CLR: Undo T2 LSN 60

LSN LOG 

begin_checkpoint, end_checkpoint00, 05

CLR: Undo T1 LSN 10, T1 end

T1 abort

40, 45

CLR: Undo T3 LSN 50, T3 end

CLR: Undo T2 LSN 20, T2 end

undonextLSN

prevLSN 

80, 85

90, 95

Figure 20.5 Example of Undo with Repeated Crashes

The log shows the order in which the DBMS executed various actions; notice that the

LSNs are in ascending order, and that each log record for a transaction has a prevLSN



Crash Recovery 585

field that points to the previous log record for that transaction. We have not shown

null prevLSNs, that is, some special value used in the prevLSN field of the first log

record for a transaction to indicate that there is no previous log record. We have

also compacted the figure by occasionally displaying two log records (separated by a

comma) on a single line.

Log record (with LSN) 30 indicates that T1 aborts. All actions of this transaction

should be undone in reverse order, and the only action of T1, described by the update

log record 10, is indeed undone as indicated by CLR 40.

After the first crash, Analysis identifies P1 (with recLSN 50), P3 (with recLSN 20),

and P5 (with recLSN 10) as dirty pages. Log record 45 shows that T1 is a completed

transaction; thus, the transaction table identifies T2 (with lastLSN 60) and T3 (with

lastLSN 50) as active at the time of the crash. The Redo phase begins with log record

10, which is the minimum recLSN in the dirty page table, and reapplies all actions (for

the update and CLR records), as per the Redo algorithm presented in Section 20.2.2.

The ToUndo set consists of LSNs 60, for T2, and 50, for T3. The Undo phase now

begins by processing the log record with LSN 60 because 60 is the largest LSN in the

ToUndo set. The update is undone, and a CLR (with LSN 70) is written to the log.

This CLR has undoNextLSN equal to 20, which is the prevLSN value in log record

60; 20 is the next action to be undone for T2. Now the largest remaining LSN in the

ToUndo set is 50. The write corresponding to log record 50 is now undone, and a CLR

describing the change is written. This CLR has LSN 80, and its undoNextLSN field

is null because 50 is the only log record for transaction T3. Thus T3 is completely

undone, and an end record is written. Log records 70, 80, and 85 are written to stable

storage before the system crashes a second time; however, the changes described by

these records may not have been written to disk.

When the system is restarted after the second crash, Analysis determines that the

only active transaction at the time of the crash was T2; in addition, the dirty page

table is identical to what it was during the previous restart. Log records 10 through

85 are processed again during Redo. (If some of the changes made during the previous

Redo were written to disk, the pageLSNs on the affected pages are used to detect this

situation and avoid writing these pages again.) The Undo phase considers the only

LSN in the ToUndo set, 70, and processes it by adding the undoNextLSN value (20)

to the ToUndo set. Next, log record 20 is processed by undoing T2’s write of page

P3, and a CLR is written (LSN 90). Because 20 is the first of T2’s log records—and

therefore, the last of its records to be undone—the undoNextLSN field in this CLR is

null, an end record is written for T2, and the ToUndo set is now empty.

Recovery is now complete, and normal execution can resume with the writing of a

checkpoint record.



586 Chapter 20

This example illustrated repeated crashes during the Undo phase. For completeness,

let us consider what happens if the system crashes while Restart is in the Analysis or

Redo phases. If a crash occurs during the Analysis phase, all the work done in this

phase is lost, and on restart the Analysis phase starts afresh with the same information

as before. If a crash occurs during the Redo phase, the only effect that survives the

crash is that some of the changes made during Redo may have been written to disk

prior to the crash. Restart starts again with the Analysis phase and then the Redo

phase, and some update log records that were redone the first time around will not be

redone a second time because the pageLSN will now be equal to the update record’s

LSN (although the pages will have to fetched again to detect this).

We can take checkpoints during Restart to minimize repeated work in the event of a

crash, but we will not discuss this point.

20.3 MEDIA RECOVERY

Media recovery is based on periodically making a copy of the database. Because

copying a large database object such as a file can take a long time, and the DBMS

must be allowed to continue with its operations in the meantime, creating a copy is

handled in a manner similar to taking a fuzzy checkpoint.

When a database object such as a file or a page is corrupted, the copy of that object is

brought up-to-date by using the log to identify and reapply the changes of committed

transactions and undo the changes of uncommitted transactions (as of the time of the

media recovery operation).

The begin checkpoint LSN of the most recent complete checkpoint is recorded along

with the copy of the database object in order to minimize the work in reapplying

changes of committed transactions. Let us compare the smallest recLSN of a dirty

page in the corresponding end checkpoint record with the LSN of the begin checkpoint

record and call the smaller of these two LSNs I. We observe that the actions recorded

in all log records with LSNs less than I must be reflected in the copy. Thus, only log

records with LSNs greater than I need to be reapplied to the copy.

Finally, the updates of transactions that are incomplete at the time of media recovery

or that were aborted after the fuzzy copy was completed need to be undone to ensure

that the page reflects only the actions of committed transactions. The set of such

transactions can be identified as in the Analysis pass, and we omit the details.



Crash Recovery 587

20.4 OTHER ALGORITHMS AND INTERACTION WITH

CONCURRENCY CONTROL

Like ARIES, the most popular alternative recovery algorithms also maintain a log of

database actions according to the WAL protocol. A major distinction between ARIES

and these variants is that the Redo phase in ARIES repeats history, that is, redoes

the actions of all transactions, not just the non-losers. Other algorithms redo only the

non-losers, and the Redo phase follows the Undo phase, in which the actions of losers

are rolled back.

Thanks to the repeating history paradigm and the use of CLRs, ARIES is able to

support fine-granularity locks (record-level locks) and logging of logical operations,

rather than just byte-level modifications. For example, consider a transaction T that

inserts a data entry 15∗ into a B+ tree index. Between the time this insert is done and

the time that T is eventually aborted, other transactions may also insert and delete

entries from the tree. If record-level locks are set, rather than page-level locks, it is

possible that the entry 15∗ is on a different physical page when T aborts from the one

that T inserted it into. In this case the undo operation for the insert of 15∗ must be

recorded in logical terms because the physical (byte-level) actions involved in undoing

this operation are not the inverse of the physical actions involved in inserting the entry.

Logging logical operations yields considerably higher concurrency, although the use of

fine-granularity locks can lead to increased locking activity (because more locks must

be set). Thus, there is a trade-off between different WAL-based recovery schemes. We

have chosen to cover ARIES because it has several attractive properties, in particular,

its simplicity and its ability to support fine-granularity locks and logging of logical

operations.

One of the earliest recovery algorithms, used in the System R prototype at IBM,

takes a very different approach. There is no logging and, of course, no WAL protocol.

Instead, the database is treated as a collection of pages and accessed through a page

table, which maps page ids to disk addresses. When a transaction makes changes to

a data page, it actually makes a copy of the page, called the shadow of the page,

and changes the shadow page. The transaction copies the appropriate part of the

page table and changes the entry for the changed page to point to the shadow, so

that it can see the changes; however, other transactions continue to see the original

page table, and therefore the original page, until this transaction commits. Aborting

a transaction is simple: just discard its shadow versions of the page table and the data

pages. Committing a transaction involves making its version of the page table public

and discarding the original data pages that are superseded by shadow pages.

This scheme suffers from a number of problems. First, data becomes highly fragmented

due to the replacement of pages by shadow versions, which may be located far from



588 Chapter 20

the original page. This phenomenon reduces data clustering and makes good garbage

collection imperative. Second, the scheme does not yield a sufficiently high degree of

concurrency. Third, there is a substantial storage overhead due to the use of shadow

pages. Fourth, the process aborting a transaction can itself run into deadlocks, and

this situation must be specially handled because the semantics of aborting an abort

transaction gets murky.

For these reasons, even in System R, shadow paging was eventually superseded by

WAL-based recovery techniques.

20.5 POINTS TO REVIEW

ARIES is a very popular recovery algorithm with a steal, no-force approach. Com-

pared to other recovery algorithms, ARIES is relatively simple, and supports locks

at a finer granularity than a page. After a crash, restart in ARIES proceeds in

three phases. The Analysis phase identifies dirty buffer pool pages and active

transactions at the time of the crash. The Redo phase restores the database to its

state at the time of the crash. The Undo phase undoes actions of transactions that

did not commit due to the crash. ARIES maintains a log of all actions executed by

the DBMS. Each log record has a unique log sequence number (LSN). Log records

are written for updates, commits, aborts, and whenever an update is undone. In

addition, a special end record is written whenever the DBMS finishes processing

a transaction. ARIES is a write-ahead log protocol. Before writing a page to disk

or before committing a transaction, every log record that refers to the page or

transaction is forced to disk. To reduce the amount of work to be done during

a restart, the DBMS takes occasional snapshots called checkpoints. The restart

process then starts at the most recent checkpoint. (Section 20.1)

After a system crash, the Analysis, Redo, and Undo phases are executed. The

redo phase repeats history by transforming the database into its state before the

crash. The Undo phase undoes actions by loser transaction, transactions that are

aborted since they were active at the time of the crash. ARIES handles subsequent

crashes during system restart by writing compensating log records (CLRs) when

undoing actions of aborted transaction. CLRs indicate which actions have already

been undone and prevent undoing the same action twice. (Section 20.2)

To be able to recover from media failure without reading the complete log, we

periodically make a copy of the database. The procedure of copying the database

is similar to creating a checkpoint. (Section 20.3)

There are other recovery schemes based on write-ahead logging and there is a re-

covery scheme that makes changes to copies of data pages, or shadow pages. Aries

and its variants are replacing these other schemes because of their relative simplic-



Crash Recovery 589

ity and ability to support fine-granularity locks and logging of logical operations.

(Section 20.4)

EXERCISES

Exercise 20.1 Briefly answer the following questions:

1. How does the recovery manager ensure atomicity of transactions? How does it ensure

durability?

2. What is the difference between stable storage and disk?

3. What is the difference between a system crash and a media failure?

4. Explain the WAL protocol.

5. Describe the steal and no-force policies.

Exercise 20.2 Briefly answer the following questions:

1. What are the properties required of LSNs?

2. What are the fields in an update log record? Explain the use of each field.

3. What are redoable log records?

4. What are the differences between update log records and CLRs?

Exercise 20.3 Briefly answer the following questions:

1. What are the roles of the Analysis, Redo and Undo phases in ARIES?

2. Consider the execution shown in Figure 20.6.

(a) What is done during Analysis? (Be precise about the points at which Analysis

begins and ends and describe the contents of any tables constructed in this phase.)

(b) What is done during Redo? (Be precise about the points at which Redo begins and

ends.)

(c) What is done during Undo? (Be precise about the points at which Undo begins

and ends.)

Exercise 20.4 Consider the execution shown in Figure 20.7.

1. Extend the figure to show prevLSN and undonextLSN values.

2. Describe the actions taken to rollback transaction T2.

3. Show the log after T2 is rolled back, including all prevLSN and undonextLSN values in

log records.

Exercise 20.5 Consider the execution shown in Figure 20.8. In addition, the system crashes

during recovery after writing two log records to stable storage and again after writing another

two log records.



590 Chapter 20

10

20

30

40

50

60

00

end_checkpoint

begin_checkpoint

LOG LSN

update: T1 writes P5

update: T2 writes P3

update: T3 writes P3

CRASH, RESTART

T2 end

T2 commit

T1 abort70

Figure 20.6 Execution with a Crash

10

20

30

40

50

60

LSN LOG 

00

update: T1 writes P1

update: T3 writes P3

70

update: T1 writes P2

update: T2 writes P3

update: T2 writes P5

update: T2 writes P5

T2 abort

T3 commit

Figure 20.7 Aborting a Transaction



Crash Recovery 591

10

20

30

40

50

60

LSN LOG 

00

70

CRASH, RESTART

T3 abort

update: T1 writes P5

T2 end

update: T3 writes P2

T2 commit

update: T3 writes P3

update: T2 writes P2

update: T1 writes P1

begin_checkpoint

end_checkpoint

80

90

Figure 20.8 Execution with Multiple Crashes

1. What is the value of the LSN stored in the master log record?

2. What is done during Analysis?

3. What is done during Redo?

4. What is done during Undo?

5. Show the log when recovery is complete, including all non-null prevLSN and undonextLSN

values in log records.

Exercise 20.6 Briefly answer the following questions:

1. How is checkpointing done in ARIES?

2. Checkpointing can also be done as follows: Quiesce the system so that only checkpointing

activity can be in progress, write out copies of all dirty pages, and include the dirty page

table and transaction table in the checkpoint record. What are the pros and cons of this

approach versus the checkpointing approach of ARIES?

3. What happens if a second begin checkpoint record is encountered during the Analysis

phase?

4. Can a second end checkpoint record be encountered during the Analysis phase?

5. Why is the use of CLRs important for the use of undo actions that are not the physical

inverse of the original update?

6. Give an example that illustrates how the paradigm of repeating history and the use of

CLRs allow ARIES to support locks of finer granularity than a page.

Exercise 20.7 Briefly answer the following questions:



592 Chapter 20

10

20

30

40

LSN LOG 

00 begin_checkpoint

update: T1 writes P1

update: T2 writes P2

50

60

70

80

T1 commit

CRASH, RESTART

T3 commit

end_checkpoint

update: T3 writes P3

T2 abort

T1 end

Figure 20.9 Log Records between Checkpoint Records

1. If the system fails repeatedly during recovery, what is the maximum number of log

records that can be written (as a function of the number of update and other log records

written before the crash) before restart completes successfully?

2. What is the oldest log record that we need to retain?

3. If a bounded amount of stable storage is used for the log, how can we ensure that there

is always enough stable storage to hold all log records written during restart?

Exercise 20.8 Consider the three conditions under which a redo is unnecessary (Section

20.2.2).

1. Why is it cheaper to test the first two conditions?

2. Describe an execution that illustrates the use of the first condition.

3. Describe an execution that illustrates the use of the second condition.

Exercise 20.9 The description in Section 20.2.1 of the Analysis phase made the simplifying

assumption that no log records appeared between the begin checkpoint and end checkpoint

records for the most recent complete checkpoint. The following questions explore how such

records should be handled.

1. Explain why log records could be written between the begin checkpoint and end checkpoint

records.

2. Describe how the Analysis phase could be modified to handle such records.

3. Consider the execution shown in Figure 20.9. Show the contents of the end checkpoint

record.

4. Illustrate your modified Analysis phase on the execution shown in Figure 20.9.

Exercise 20.10 Answer the following questions briefly:



Crash Recovery 593

1. Explain how media recovery is handled in ARIES.

2. What are the pros and cons of using fuzzy dumps for media recovery?

3. What are the similarities and differences between checkpoints and fuzzy dumps?

4. Contrast ARIES with other WAL-based recovery schemes.

5. Contrast ARIES with shadow-page-based recovery.

BIBLIOGRAPHIC NOTES

Our discussion of the ARIES recovery algorithm is based on [473]. [241] is a survey article

that contains a very readable, short description of ARIES. [470, 474] also discuss ARIES.

Fine-granularity locking increases concurrency but at the cost of more locking activity; [471]

suggests a technique based on LSNs for alleviating this problem. [396] presents a formal

verification of ARIES.

[300] is an excellent survey that provides a broader treatment of recovery algorithms than

our coverage, in which we have chosen to concentrate on one particular algorithm. [13]

considers performance of concurrency control and recovery algorithms, taking into account

their interactions. The impact of recovery on concurrency control is also discussed in [675].

[544] contains a performance analysis of various recovery techniques. [199] compares recovery

techniques for main memory database systems, which are optimized for the case that most

of the active data set fits in main memory. [288] provides an encyclopedic treatment of

transaction processing.

[414] presents a description of a recovery algorithm based on write-ahead logging in which

‘loser’ transactions are first undone and then (only) transactions that committed before the

crash are redone. Shadow paging is described in [428, 287]. A scheme that uses a combination

of shadow paging and in-place updating is described in [543].




